# A. Defining Core Practices for MM Teacher Designers

**Defining Core Practices for MM Teacher Designers**. Suh et al., (In press) reported ways in which researchers are collaborating with teacher designers to develop personally relevant and rigorous MM tasks for elementary students. These design skills include : 1) Leveraging problem posing routines: When posing a MM problem, teacher-designers adopted instructional routines for problem posing and worked on developing teacher and student questioning competence; 2) Connecting familiar context that engages students: Teachers, as designers, looked for situational features that warranted mathematizing and searched for contexts that were relevant and important to support students engagement in modeling. In addition, teachers elicited students to think about how their solution was shareable, reuseable, or generalizable, in order to evaluate whether a systematic model was created; 3) Connecting context with content: Teachers connected the need for mathematics in a modeling task with the curricular objectives of their grade level; 4) Considering categories of MM tasks: The modeling tasks tended to fall into four general categories where a mathematical solution or model could be used to describe, predict, optimize, and make decisions about real world situations.

- Descriptive Modeling- Using math to describe, represent and analyze a situation or a phenomenon.
- Optimization Modeling -Using data to find the “best” by optimizing or in some cases minimizing some variable(i.e., cost, space) in a situation.
- Rating and ranking- Using a criteria where one assigns weights or mathematical measures as a way to rate and rank options to make decisions.
- Predictive Modeling- Using trends and data analysis to predict an outcome or use patterns (data analysis and algebra) to predict a situation and make decisions. In some tasks, probability and statistical modeling is used to search for patterns in data to explain a phenomenon (i.e., scientific phenomenon used in STEM contexts).